- Biblioteca Pública
- Artes & Otros
- Ciencia de la computación y tecnología
- Alfabetización de datos
- Raw Facts, Fine Print: Senior Data Ethics & Literacy Quiz
Raw Facts, Fine Print: Senior Data Ethics & Literacy Quiz (Hard) Hoja de trabajo • Descarga gratuita en PDF con clave de respuestas
Can you spot the algorithmic bias in a dataset? Deconstruct complex data provenance and evaluate the socio-technical implications of information architecture.
Panorama pedagógico
This assessment evaluates high school students' understanding of data ethics, algorithmic bias, and technical data provenance. The quiz utilizes a deconstructive approach to challenge students to identify structural inequalities and privacy risks within information architecture. It is ideal for an AP Computer Science Principles course or a senior-level Digital Literacy seminar looking to meet high-level data interpretation requirements.
¿No te gusta esta hoja de trabajo? Genera tu propia hoja de trabajo de Arts And Other Computer Science And Technology Data Literacy con un solo clic.
Crea una hoja de trabajo personalizada adaptada a las necesidades de tu aula con solo un clic.
Genera tu propia hoja de trabajoQué aprenderán los estudiantes
- Identify and differentiate between various types of data bias including sampling and survivorship bias.
- Evaluate the ethical implications of data persistence and metadata collection in IoT environments.
- Analyze the technical mechanisms of data privacy such as differential privacy and standard deviation tests.
All 10 Questions
- A researcher examines a dataset of urban mobility patterns where data was only collected from users with high-end smartphones. This is an example of which data literacy concern?A) Survivorship BiasB) Sampling BiasC) Data SiloingD) Algorithmic Transparency
- The concept of ____ refers to the chronological record of the origin, movement, and transformations of a dataset, essential for verifying its integrity.A) Data NormalizationB) Data ScrapingC) Data ProvenanceD) Data Warehousing
- True or False: In a high-stakes predictive model, a high correlation coefficient (r) between two variables is sufficient evidence to establish a direct causal mechanism for policy-making.A) TrueB) False
Show all 10 questions
- When evaluating the 'Veracity' of Big Data in a corporate audit, which factor is most critical to investigate?A) The speed at which the data is processedB) The physical storage location of the serversC) The consistency and trustworthiness of the data pointsD) The file format of the raw metadata
- To protect individual privacy in large public datasets, organizations often use ____, which adds 'mathematical noise' to the data to prevent de-identification.A) Differential PrivacyB) Symmetric EncryptionC) Data ShardingD) Boolean Filtering
- Simpson's Paradox is a data phenomenon where a trend appears in several groups of data but ____ when these groups are combined.A) Remains identicalB) Disappears or reversesC) Increases in statistical significanceD) Becomes a linear regression
- True or False: Using an 'unsupervised learning' algorithm for data analysis eliminates the risk of human bias being integrated into the final output.A) TrueB) False
- An analyst uses a ____ to identify outliers in a dataset that might indicate sensor failure or fraudulent activity rather than genuine trends.A) Standard Deviation TestB) Data LakeC) Relational SchemaD) Lookup Table
- Which of these is a primary ethical implication of 'Data Persistence' in the context of the Internet of Things (IoT)?A) The difficulty of correcting inaccurate historical dataB) The requirement for high-speed fiber optic cablesC) The use of SQL over NoSQL databasesD) The carbon footprint of physical data centers
- True or False: Metadata (data about data) can often reveal more sensitive personal information in aggregate than the actual content of the primary data itself.A) TrueB) False
Try this worksheet interactively
Try it nowUtiliza esta hoja de trabajo en tu aula, ¡es completamente gratis!
Prueba esta hoja de trabajoEditar hoja de trabajoDescargar como PDFDescargar clave de respuestasGuardar en tu biblioteca
Añade esta hoja de trabajo a tu biblioteca para editarla y personalizarla.
Preguntas Frecuentes
Yes, this Data Ethics Quiz is a robust options for a sub-plan because the detailed explanations provided for each answer allow a non-specialist to facilitate a meaningful review session.
Most twelfth-grade students will complete this Data Literacy Quiz in approximately 20 to 25 minutes, making it an efficient check for understanding during a standard class period.
This Data Ethics Quiz can be used for differentiation by using the provided explanations as a scaffold for students who need more support with complex socio-technical concepts.
This Data Literacy Quiz is specifically designed for grade 12 students or advanced high schoolers due to the sophisticated vocabulary and abstract concepts regarding information architecture.
Teachers can use this Data Ethics Quiz as a pre-test or mid-unit pulse check to identify specific misconceptions about statistical paradoxes and data provenance.
Hojas de trabajo relacionadas
Tarjetas de Estudio
Cuestionario de Opción Múltiple • Grado 1
Cuestionario de Opción Múltiple • Grado pre-k
Cuestionario de Opción Múltiple • Grado 12